

Eigenvalue Decay of Positive Integral Operators

Mario H. De Castro*

*The author thanks FAPEMIG and PROPP-UFU

Resumo

Let \mathbb{M} be a compact two-point homogeneous space of dimension m. In this work, we will always consider $m \geq 2$. Let dx be the usual volume element on \mathbb{M} and $L^2(\mathbb{M})$ the Hilbert space of all squareintegrable complex functions on \mathbb{M} endowed with the usual inner product normalized $\langle f, g \rangle_2$ and the derived norm $|| \cdot ||_2$.

We will deal with integral operators defined by

$$\mathcal{K}(f) = \int_{\mathbb{M}} K(\cdot, y) f(y) \, dy, \tag{1}$$

in which the generating kernel $K: \mathbb{M} \times \mathbb{M} \to \mathbb{C}$ is an element of $L^2(\mathbb{M} \times \mathbb{M})$. In this case, (1) defines a compact operator on $L^2(\mathbb{M})$. If K is L^2 -positive definite in the sense that

$$\int_{\mathbb{M}} \int_{\mathbb{M}} K(x, y) f(x) \overline{f(y)} \, dx dy \ge 0, \quad f \in L^2(\mathbb{M}), \tag{2}$$

then \mathcal{K} becomes a self-adjoint operator and the standard spectral theorem for compact and self-adjoint operators is applicable and we can write

$$\mathcal{K}(f) = \sum_{n=0}^{\infty} \lambda_n(\mathcal{K}) \langle f, f_n \rangle_2 f_n, \quad f \in L^2(\mathbb{M}), \tag{3}$$

in which $\{\lambda_n(\mathcal{K})\}\$ is a sequence of nonnegative reals (possibly finite) decreasing to 0 and $\{f_n\}$ is an $\langle \cdot, \cdot \rangle_2$ -orthonormal basis of $L^2(\mathbb{M})$. The numbers $\lambda_n(\mathcal{K})$ are the eigenvalues of \mathcal{K} and the sequence $\{\lambda_n(\mathcal{K})\}\$ takes into account possible repetitions implied by the algebraic multiplicity of each eigenvalue.

We observe that the addition of continuity to K implies that \mathcal{K} is also *trace-class* (nuclear) ([2]). Consequently

$$\sum_{n=1}^{\infty} \lambda_n(\mathcal{K}) = \int_{\mathbb{M}} K(x, x) \, dx < \infty, \tag{4}$$

and we can extract the most elementary result on decay rates for the eigenvalues of such operators, namely,

$$\lambda_n(\mathcal{K}) = o(n^{-1}). \tag{5}$$

In this work we analyze the asymptotic behavior of the sequence $\{\lambda_n(\mathcal{K})\}$ under additional smoothness assumptions on the kernel K.

Referências

- CASTRO, M. H.; MENEGATTO, V. A., Eigenvalue decay of positive integral operators on the sphere. Math. Comp. 81 (2012), no. 280, 2303-2317.
- [2] GOHBERG, I. C.; KREIN, M. G. Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I., 1969.